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Numerical study of wave propagation in uniaxially anisotropic Lorentzian backward-wave slabs
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The propagation and refraction of a cylindrical wave created by a line current through a slab of backward-
wave medium, also called left-handed medium, is numerically studied with a finite-difference time-domain
method. The slab is assumed to be uniaxially anisotropic. Several sets of constitutive parameters are considered
and comparisons with theoretical results are made. Electric field distributions are studied inside and behind the
slab. It is found that the shape of the wave fronts and the regions of real and complex wave vectors are in
agreement with theoretical results.
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I. INTRODUCTION

Metamaterials have received much attention during
last few years, because they possess unusual electromag
properties, for example, the opposite directions of phase
group velocities. Double negative~DNG! materials have
negative permittivity and permeability, and they belong
the class of metamaterials. These media that are capab
supporting backward waves have also been called backw
wave ~BW! media in the literature@1#. In BW media, the
refraction phenomenon is anomalous in the sense that
power flow is refracted negatively, i.e., to the same side
the normal of the interface. As discussed in Ref.@1#, it is not
necessary for the medium to be a DNG medium to be abl
support backward waves, because anomalous refraction
also be realized with anisotropic media with only one ne
tive material parameter. We will use the term BW mediu
throughout the rest of the paper.

The pioneering work on BW materials by Veselago@2#,
where slab lenses were mentioned, has gained much a
tion during recent years, despite some differing opinions
the subject@3#. Isotropic BW materials are often called Ve
selago materials. The possibility to realize a perfect lens w
isotropic BW slabs was discussed by Pendry in Ref.@4#.
Numerical and theoretical considerations of wave propa
tion in isotropic BW slabs excited with a line current abo
the slab were presented by Ziolkowski and Heyman in R
@5#. Guidance of waves in a slab of uniaxially anisotrop
metamaterial has been theoretically discussed by Lindell
Ilvonen in Ref.@6#.

Controversial opinions regarding negative refraction
fect and the perfect lens call for more detailed studies of
wave phenomena in backward-wave media. In this pa
wave propagation through uniaxially anisotropic BW slabs
numerically studied, and comparison is made with the the
presented in Ref.@1#. The theory predicts that there are r
gions in certain BW media, where the wave vector becom
complex, thus resulting in exponentially decaying wav
These regions are bounded by the asymptotes of the w
vector surfaces, which can be shown to be hyperbolas.
study these phenomena numerically using the fin
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difference time-domain ~FDTD! method in a two-
dimensional~2D! problem of a line current radiating in th
vicinity of a BW slab. Also, the existence of surface wav
on an interface between free space and BW medium is d
onstrated with an example case. The BW medium is reali
with Lorentzian constitutive parameters having a single p
pair.

An example problem with some theoretical discussion
presented in Sec. III. Results from the numerical simulatio
are shown and discussed in Sec. IV. Our numerical sim
tions show that the wave propagation and refraction phen
ena heavily depend on the parameter choices of the BW
dium and are qualitatively in agreement with the theory.

II. NUMERICAL MODEL OF DISPERSIVE MEDIUM

The constitutive relations for a frequency dispersive is
tropic medium read

D5e~v!E, B5m~v!H. ~1!

Negative permittivity and permeability are realized with t
Lorentz medium model. The expressions for the permittiv
and permeability are of the form

e~v!5e0S 11
vpe

2

v0e
2 2v21 j Gev

D ,

m~v!5m0S 11
vpm

2

v0m
2 2v21 j Gmv

D . ~2!

This model corresponds to a realization of BW materials
mixtures of conductive spirals or omega particles, as d
cussed in Ref.@7#. In this artificial material both electric and
magnetic polarizations are due to currents induced on
ticles of only one shape, which provides a possibility to
alize the same dispersion rule for both material paramet
as in Eq.~2!. Note that the medium realized by Smithet al. is
built using different principles@8#. For the uniaxial materials
that we consider in this paper we assume that the nega
components of the material parameters are realized by s
uniaxial spiral inclusions~racemic arrays with an equal num
ber of right- and left-handed particles! and possess frequenc
dispersion defined by Eq.~2!. The positive components o
©2003 The American Physical Society02-1
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the material parameters are equal to the free-space perm
ity and permeability values, assuming that there are no
ticles oriented along these axes.

Equations~1! and ~2! form the basis of the used FDTD
model for BW materials. The two most important know
FDTD methods for modeling dispersive materials, such
the Lorentz materials, are the recursive convolution met
and the auxiliary differential equation method, where t
constitutive parameters are expressed with the help of
ceptibility. In the first method,D and E, and B and H are
related through a convolution integral. This approach
rather tedious. Another possibility is to use the auxiliary d
ferential equation technique, which is slightly easier
implement. In this latter method, the polarization current
sociated to each Lorentz pole pair is introduced. These
models are discussed in detail in Ref.@9#.

A third method to discretize fields in the Lorentz mediu
classified as direct integration method in Ref.@10#, is based
on the direct discretization of the partial differential equati
representing the time-domain equivalence of the simplifi
frequency-domain constitutive relation. The proposed d
cretization scheme is a modification of this method. The id
is to transform Eq.~1! into the time domain using the rela
tion j v↔]/]t with one integration before discretization u
ing center differences. Usually, FDTD models based on
constitutive relation are directly~after multiplication with the
denominator! discretized, as discussed in a summary
FDTD algorithms for dispersive media in Ref.@10#. We have
found in Ref.@11# that one integration prior to discretizatio
leads to much better accuracy and, what is also importan
considerably better stability than the direct discretizat
without integration. In the numerical simulations, we ha
used the model that is discussed in detail in Ref.@11#.

III. AN EXAMPLE PROBLEM
AND THEORETICAL DISCUSSION

Consider az-directed line current in free space located
a distanceds from a BW slab of thicknessd. Let the interface
between free space and the BW slab be located aty50. The
problem space is two-dimensional, with the field compone
Hx ,Hy , and Ez . The peak of the incident spectrum is
vp55.03109 rad/s, and the parameters in Eq.~2! are the
following: v0e5v0m51.03109 rad/s, vpe

2 5vpm
2 54.8

31019 (rad/s)2, Ge5Gm50. With these choices, we obtai
e(v)5m(v) for all v and e(v)/e05m(v)/m0521 at v
5vp . The spatial resolutionDx5Dy51.5 cm is used
throughout the simulations. To be able to demonstrate
properties of BW materials, the incident spectrum is qu
narrow, so that the relative constitutive parameters are c
to 21 for the frequencies having significant spectral conte
Absorbing boundary conditions are used to terminate
computational domain at the outer boundaries of the latt
For simplicity, we have used Liao’s third-order ABC, a
though more sophisticated ABC’s are available. The use
usual ABC’s requires a small gap between the outer bou
ary of the computational space and the BW material s
The chosen coordinate axes and the problem geometry
shown in Fig. 1. Next, we briefly present some theoreti
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results from Ref.@1# that are important here for compariso
purposes with our numerical results. Wave propagation
BW slabs is studied with different value combinations of t
medium parametersmx , my , andez . For our TE-polarized
case, the Poynting vectorSTE can be shown to read@1#

STE5
m̄̄•kTE

2k0h0m0mxmy
uE0u2, ~3!

whereuE0u is the amplitude of the TE-polarized electric fie
of the plane wave,kTE is the wave vector with two cartesia
componentskx andky , k05vAe0m0 is the free-space wave

number, andh05Am0 /e0 is the free-space wave impedanc
Denoting the angle between the outwards-pointing unit n
mal vectoruy and the wave vectorkTE by u, one can derive
the dispersion equation and solve it for the wave numbe
in Ref. @1#. The result is

kTE~u!5k0A mxez

cos2u1
mx

my
sin2u

. ~4!

For any given set of parameters, we may plot the project
curves of the wave vector surfaces in the plane. For cer
choices of the medium parameters, the wave number
comes complex, resulting in exponentially decaying wav
inside the BW material. In our simulations,ukTEu5k0 at the
operation frequency, and after substitutingkx5k0sin(u),ky
5k0cos(u), we readily obtain an alternative representation
Eq. ~4!:

kx
2 mx

my
1ky

25k0
2mxez . ~5!

Any physical power flow must be directed downwar
away from the source. This requires that

uy•STE,0. ~6!

The necessary condition for any transmission is

uy•kTE

mx
,0⇔ ky

mx
,0. ~7!

Clearly, the phase velocity is directed oppositely to t
power flow provided thatmx,0. Negative refraction of the
Poynting vector requires that

kxux•STE,0⇔my,0. ~8!

FIG. 1. The slab problem under consideration and the cho
coordinate system.
2-2
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FIG. 2. ~Color online! ~a! The electric fieldEz penetrating into the slab. Slab boundaries are indicated by dark lines. The snapshot is
at time stepn5400. ~b! The electric field within the slab. Notice the region in the center of the slab, where the field amplitudes ar
small. The snapshot is taken at time stepn5560. ~c! It appears that the wave fronts inside the slab are hyperbolas, in agreement wi
theory. The snapshot is taken at time stepn51060.
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For the interface problem, we will also need to kno
conditions for the existence of surface waves. The input
pedance on the surface filled by a uniaxial material is,
TE-polarized fields,

Zinp5
vmx

bTE
, ~9!

where the normal component of the propagation factor re

bTE5Amx

my
~v2ezmy2kx

2!, ~10!

with the square root branch defined by Im(bTE),0. kx is the
propagation factor along the surface. Thus, the eigens
tions for an interface between this medium and free sp
satisfy the following equation:

mx

bTE
1

m0

b0
50, ~11!

where

b05Av2e0m02kx
2, ~12!

with Im(b0),0.
Surface waves along the interface exist provided that b

b ’s are imaginary, of course with negative imaginary par
bTE52 j aTE and b052 j a0, where aTE.0 and a0.0.
The eigenvalue equation becomes

mx

aTE
1

m0

a0
50. ~13!

Obviously, if all the material parameters are positive, t
equation has no solutions, but ifmx,0, surface wave solu
tions are possible. This is well known for interfaces w
free-electron plasma.

Five different cases will be considered in the following.
the first case, we choosemx.0, my,0, and ez,0. The
wave vector surface is a two-sheeted hyperboloid with a
parallel to thex axis. The asymptotes of the hyperbola inxy
plane divide the plane into regions of complex and real w
02660
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vectors. Waves that are propagating parallel toy axis are
supposed to decay exponentially inside the slab. Indeed
mx51,my521,ez521 dispersion equation~5! takes the
form

2kx
21ky

252k0
2 , ~14!

which represents, for a givenk0, the two-sheeted hyperbo
loid in kxky plane with the axis parallel tokx axis. It is easily
seen from Eq.~14! that for waves withkx50, ky becomes
complex and the fields inside the slab decay exponenti
with the distance from the interface.

In the second case,mx.0, my,0, ez.0. The wave vec-
tor surface is a two-sheeted hyperboloid with the axis pa
lel to the surface normal. In our 2D case, real wave vect
exist inside the region bounded by the asymptotes of
hyperbola associated to the wave vector surfaces. In
case, dispersion equation~5! for mx51,my521,ez51 takes
the form

2kx
21ky

25k0
2 . ~15!

As a third case, we consider the situation complement
to the second case in the sense that the signs of all the
rameters are changed. Notice that this does not affect
shape of the wave vector curves, so that the dispersion e
tion is of form ~15!. We havemx,0, my.0, andez,0. In
fact, the Poynting vector is refracted positively in this ca
@see Eq.~8!#, but this is an interesting case anyway becau
of the afore-mentioned contrast with respect to the sec
case.

The fourth case consists of the usual isotropic BW s
(mx5my,0, and ez,0) where focusing and negative re
fraction phenomena are present. The wave vector curves
ellipses ~in our case of two equal parameters they a
circles!, and real wave vectors exist everywhere inside
slab.

The fifth case is specially chosen to show the existenc
surface waves in the case whenmx,0, my,0, andez.0.
We can easily see from Eq.~5! that there are neither rea
wave vectors nor backward waves, sincekx

21ky
252k0

2,0
for mx5my521,ez51. However, it was found that surfac
2-3
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FIG. 3. ~Color online! ~a! The electric fieldEz penetrating into the slab. The snapshot is taken at time stepn5240. ~b! The electric field
within the slab. Some waves have already passed through the slab. It is seen that there are small fields in the region, where the w
is complex, as predicted by the theory. The snapshot is taken at time stepn5400. ~c! Dispersive effects are more clearly seen inside the s
The electric field is concentrated to the lower side of the slab. The wave fronts behind the slab outside the region of large ampli
prolate ellipses.ds55Dy,d580Dy. The snapshot is taken at time stepn5980.
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waves on the interface are easily excited in this case. Le
now present the numerical results.

IV. NUMERICAL RESULTS AND COMPARISON
WITH THE THEORY

In the first four cases, we show the electric field distrib
tion at three suitably chosen increasing time steps to il
trate the wave propagation and refraction phenomena. In
fifth case, we illuminate a rectangular cylinder to see surf
waves. Whenever a constitutive parameter is said to be p
tive, it is supposed to be a constant and equal to the
space permittivity or permeability. Negative material para
eters obey the Lorentzian dispersion rule and equal to2e0
or 2m0 at the center frequency.

A. Case I: µxÌ0, µyË0, ezË0

In this case, the theory shows that the wave vectors
complex inside the slab within a region bounded by the
ymptotes of a hyperbola. Inspection of Fig. 2~c! reveals that
there is indeed a region in the slab, where the electric fiel
negligible all the time. There are some fields within the s
just under the source. The hyperbola-shaped wave fr
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propagate obliquely downwards inside the slab and
power flow is refracted negatively. The distance of the sou
from the first interface is discretized with five cells, and t
thickness of the slab corresponds to 80 cells.

B. Case II: µxÌ0, µyË0, ezÌ0

In Fig. 3~a!, a cylindrical wave is penetrating into a BW
slab. In Fig. 3~b!, some numerical dispersion is visible. The
are significant fields inside the region where the theory yie
real wave vectors, while the fields are rather small elsewh
Despite some dispersive effects, the wave fronts of cons
field value are reminiscent of hyperbolas. The phase velo
is directed downwards. Some weak focusing of the pow
flow is seen in Fig. 3~b!. The phase velocity inside the slab
directed downwards, as can be seen from the theory.

C. Case III: µxË0, µyÌ0, ezË0

To complete the analysis, we change the signs of the
rameters of the second case. Clearly, the wave vector
faces as defined by Eq.~4! are not changed. The Poyntin
vector is refracted positively in this case. However, the ph
velocity is directed upwards@see Eq.~7! and~8!#. This phe-
ution
fronts

b
e

FIG. 4. ~Color online! ~a! The electric fieldEz penetrating into the slab. Wave fronts are dramatically bent. The electric field distrib
is recorded at time stepn5220. ~b! The electric field within the slab. Some waves have already passed through the slab. The wave
are seen to be hyperbolas. The electric field distribution is recorded at time stepn5400. ~c! Interestingly, the wave fronts behind the sla
appear to be ellipses with the center on the lower interface of the slab.ds55Dy,d580Dy. The electric field distribution is recorded at tim
stepn5720.
2-4
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FIG. 5. ~Color online! ~a! The electric fieldEz penetrating into an isotropic BW slab. The electric fieldEz is shown at time stepn
5400. ~b! The electric field within the isotropic BW slab. Some waves have already passed through the slab. The first focus inside
is seen in the figure. The electric fieldEz is shown at time stepn5560. ~c! The second focus behind the BW slab has become visibleds

520Dy,d560Dy. The electric fieldEz is shown at time stepn5900.
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nomenon is clearly seen during the simulation. From Fig
we see that the electric field distributions inside the slab
quite similar to those of Fig. 3 except that the wave fronts
less distorted in Fig. 4. In Fig. 4~c!, the wave fronts behind
the slab are seen to be oblate ellipses with the center on
lower interface of the slab.

D. Case IV: An isotropic slab with µxË0, µyË0, ezË0

Here we consider the usual isotropic BW~or double nega-
tive! slab with all the relative material parameters close
21. This case has been studied, for example, by Ziolkow
and Heyman in Ref.@5# in the case of the Drude slabs. W
obtained quite similar results with our alternative discreti
tion technique in the case of isotropic Lorentz medium. T
electric field distributions are shown in Fig. 5. We can c
culate the positions of the foci from the slab thicknessd and
the distanceds of the source from the interface. Notice th
we must haveds,d to have a focus inside the slab. The fo
should appear aty52ds inside the slab and aty52(2d
2ds) behind the slab. The appropriate derivations can
found in Ref.@5#.

From Fig. 5~a! we see that the electric field is conce
trated in the expected position of the first focus. In Fig. 5~c!,
the second focus behind the slab is also visible. It takes s
time for the foci to develop, as is seen from Fig. 5~b!, where
the second focus is not yet seen. The incident spectrum
some small components for which the relative material
rameters are not exactly21. Hence, the wave fronts are n
perfect circles as predicted by the theory. Anyway, these
sults are in agreement with the theory concerning nega
refraction of the Poynting vector. However, no ‘‘perfect’’ fo
cusing has been observed, meaning that the focus are
always not smaller than about half wavelength. Steady-s
solutions for the foci were not obtained. This same obser
tion was also made by Ziolkowski and Heyman in Ref.@5#.

E. Case V:µxË0, µyË0, ezÌ0

For this set of material parameters, the theory predicts
the waves decay exponentially everywhere inside the s
However, we have found that surface waves are easily
cited in this case, in accordance with the theoretical pre
tion, see Eq.~13!. To see this phenomenon, we illuminate
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rectangular cylinder with a pulse having a slightly broad
spectrum. The electric field distribution induced on the s
face of the cylinder is shown in Fig. 6. Figure 6~a! shows
how the surface waves begin to develop. The source has
been switched off in Fig. 6~a!. In Fig. 6~b!, surface waves
have propagated to the opposite side of the cylinder as w
In agreement with the theory, there are no fields inside
cylinder except for the immediate vicinity of the surface
the cylinder.

V. CONCLUSIONS

Wave propagation and refraction phenomena in uniaxia
anisotropic BW slabs have been studied with the FD
method. Special attention was paid to the shape of the w
fronts and to the regions inside the slabs, where the w
vector becomes complex, thus resulting in exponentially
caying waves. The numerical results for anisotropic B

FIG. 6. ~Color online! ~a! The surface waves begin to develo
The source has just been switched off at time stepn5360. ~b! At a
later moment of time (n51020), surface waves exist around th
cylinder. As is known from the theory, there are negligible fiel
inside the cylinder.
2-5
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slabs were seen to qualitatively agree well with the theo
ical results. The effects of negative refraction,~imperfect!
focusing, and surface wave excitation have been dem
strated. Potentially useful transformations of wave fronts
tween spherical, elliptical, and hyperbolical can be realiz
in homogeneous uniaxial backward-wave slabs.
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