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Numerical study of wave propagation in uniaxially anisotropic Lorentzian backward-wave slabs
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The propagation and refraction of a cylindrical wave created by a line current through a slab of backward-
wave medium, also called left-handed medium, is numerically studied with a finite-difference time-domain
method. The slab is assumed to be uniaxially anisotropic. Several sets of constitutive parameters are considered
and comparisons with theoretical results are made. Electric field distributions are studied inside and behind the
slab. It is found that the shape of the wave fronts and the regions of real and complex wave vectors are in
agreement with theoretical results.
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I. INTRODUCTION difference time-domain (FDTD) method in a two-
dimensional(2D) problem of a line current radiating in the
Metamaterials have received much attention during theicinity of a BW slab. Also, the existence of surface waves
last few years, because they possess unusual electromagnetft an interface between free space and BW medium is dem-
properties, for example, the opposite directions of phase an@nstrated with an example case. The BW medium is realized
group velocities. Double negativéDNG) materials have With Lorentzian constitutive parameters having a single pole
negative permittivity and permeability, and they belong topair.
the class of metamaterials. These media that are capable of An example problem with some theoretical discussion are
Supporting backward waves have also been called backwar@fesented in Sec. lll. Results from the numerical simulations
wave (BW) media in the literatur¢1]. In BW media, the are shown and discussed in Sec. IV. Our numerical simula-
refraction phenomenon is anomalous in the sense that tHéons show that the wave propagation and refraction phenom-
power flow is refracted negatively, i.e., to the same side ofna heavily depend on the parameter choices of the BW me-
the normal of the interface. As discussed in R&f, itis not ~ dium and are qualitatively in agreement with the theory.
necessary for the medium to be a DNG medium to be able to
support backward waves, because anomalous refraction can 1l. NUMERICAL MODEL OF DISPERSIVE MEDIUM
also be realized with anisotropic media with only one nega-
tive material parameter. We will use the term BW medium
throughout the rest of the paper.
The pioneering work on BW materials by Veselad, D=e€(w)E, B=pu(w)H. (1)
where slab lenses were mentioned, has gained much atten-
tion during recent years, despite some differing opinions orNegative permittivity and permeability are realized with the
the subjec{3]. Isotropic BW materials are often called Ve- Lorentz medium model. The expressions for the permittivity
selago materials. The possibility to realize a perfect lens wittand permeability are of the form
isotropic BW slabs was discussed by Pendry in Rdf. ,
1+$) |

The constitutive relations for a frequency dispersive iso-
tropic medium read

Numerical and theoretical considerations of wave propaga-

tion in isotropic BW slabs excited with a line current above €(w)= € > 5

the slab were presented by Ziolkowski and Heyman in Ref. e~ 0T |Tew
[5]. Guidance of waves in a slab of uniaxially anisotropic
metamaterial has been theoretically discussed by Lindell and
llvonen in Ref.[6].

Controversial opinions regarding negative refraction ef-
fect and the perfect lens call for more detailed studies of th&his model corresponds to a realization of BW materials as
wave phenomena in backward-wave media. In this papemixtures of conductive spirals or omega particles, as dis-
wave propagation through uniaxially anisotropic BW slabs iscussed in Ref(7]. In this artificial material both electric and
numerically studied, and comparison is made with the theorynagnetic polarizations are due to currents induced on par-
presented in Refl1l]. The theory predicts that there are re- ticles of only one shape, which provides a possibility to re-
gions in certain BW media, where the wave vector becomeslize the same dispersion rule for both material parameters,
complex, thus resulting in exponentially decaying wavesas in Eq.(2). Note that the medium realized by Sméhal. is
These regions are bounded by the asymptotes of the wavmiilt using different principle$8]. For the uniaxial materials
vector surfaces, which can be shown to be hyperbolas. Wehat we consider in this paper we assume that the negative
study these phenomena numerically using the finitecomponents of the material parameters are realized by small

uniaxial spiral inclusiongracemic arrays with an equal num-
ber of right- and left-handed particlesnd possess frequency
*Electronic address: mkk@cc.hut.fi dispersion defined by Ed2). The positive components of

m(w)= o

w2
1++). 2

wgm—w2+jrmw
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the material parameters are equal to the free-space permittiv- yl

ity and permeability values, assuming that there are no par- @ line source

ticles oriented along these axes. z X —
Equations(1) and (2) form the basis of the used FDTD n
model for BW materials. The two most important known
FDTD methods for modeling dispersive materials, such as ?(O)) ﬁ(m)
the Lorentz materials, are the recursive convolution method 9

and the auxiliary differential equation method, where the
constitutive parameters are expressed with the help of sus- FIG. 1. The slab problem under consideration and the chosen
ceptibility. In the first methodD andE, andB andH are  coordinate system.

related through a convolution integral. This approach is Its Ref[1] th . here f .
rather tedious. Another possibility is to use the auxiliary dif- results from Ref[1] that are important here for comparison

ferential equation technique, which is slightly easier toPU'POS€s with our numerical results. Wave propagation in

implement. In this latter method, the polarization current asBW slabs is studied with different value combinations of the

sociated to each Lorentz pole pair is introduced. These twgqedmm pafam‘?‘tefﬁx' py, ande, . For our TE-polarized
models are discussed in detail in REd]. case, the Poynting vect@ can be shown to regd]

A third method to discretize fields in the Lorentz medium, =
classified as direct integration method in R@f0], is based Sre= ke IE,|2 3)
on the direct discretization of the partial differential equation E 2Ko mottomxily o
representing the time-domain equivalence of the simplified _ ) _ o
frequency-domain constitutive relation. The proposed disWhere|Eo| is the amplitude of the TE-polarized electric field
cretization scheme is a modification of this method. The ide®f the plane wavek is the wave vector with two cartesian
is to transform Eq(1) into the time domain using the rela- componentk, andk,, ko= w€ou, is the free-space wave
tion jw<« d/ 9t with one integration before discretization us- number, andy,= 1o/ €g is the free-space wave impedance.
ing center differences. Usually, FDTD models based on théenoting the angle between the outwards-pointing unit nor-
constitutive relation are directfafter multiplication with the  mal vectoru, and the wave vectdire by 6, one can derive
denominator discretized, as discussed in a summary ofthe dispersion equation and solve it for the wave number as
FDTD algorithms for dispersive media in R€L0]. We have in Ref.[1]. The result is
found in Ref.[11] that one integration prior to discretization
leads to much better accuracy and, what is also important, to
considerably better stability than the direct discretization kre(#) =Ko -
without integration. In the numerical simulations, we have cogo+ &sinza
used the model that is discussed in detail in R&f). My

Mx€z (4)

For any given set of parameters, we may plot the projection

Ill. AN EXAMPLE PROBLEM curves of the wave vector surfaces in the plane. For certain

AND THEORETICAL DISCUSSION choices of the medium parameters, the wave number be-

, . , ) comes complex, resulting in exponentially decaying waves
Consider az-directed line current in free space located atjqide the BW material. In our simulationtke| =k, at the

a distancal from a BW slab of thicknesd. Let the interface ; P :

operation frequency, and after substitutikg=kosin(6),k,
between free space and the BW slab be locatgd=. The  _ -q5), we readily obtain an alternative representation of
problem space is two-dimensional, with the field component;t_q_ (4):

H,,Hy, andE,. The peak of the incident spectrum is at

wp=5.0% 10° rad/s, and the parameters in HG) are the SHx o o

following:  wge=wom=1.0x10° rad/s, ~w?.=wi,=4.8 ks oy ky=Komxe;. 5

x 10 (rad/sf, I'e=T,=0. With these choices, we obtain Y

e(w)=pu(w) for all  and e(w)/eg=pu(w)/pwe=—1 at w Any physical power flow must be directed downwards

=w,. The spatial resolutionAx=Ay=1.5cm is used away from the source. This requires that

throughout the simulations. To be able to demonstrate the

properties of BW materials, the incident spectrum is quite Uy~ Sre<0. (6)
narrow, so that the relative constitutive parameters are clos?
to —1 for the frequencies having significant spectral content.
Absorbing boundary conditions are used to terminate the k
computational domain at the outer boundaries of the lattice. <0 —21<0. (7)
For simplicity, we have used Liao’s third-order ABC, al- K Hx

though more sophisticated ABC'’s are available. The use Otlearly, the phase velocity is directed oppositely to the

usual ABC's requires a small gap between the outer boundsoyer flow provided thajt,<0. Negative refraction of the
ary of the computational space and the BW material SlabPoynting vector requires that

The chosen coordinate axes and the problem geometry are
shown in Fig. 1. Next, we briefly present some theoretical KxUy- Sre<0¢ u,<0. (8

he necessary condition for any transmission is

uy- kre
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FIG. 2. (Color onling (a) The electric fieldE, penetrating into the slab. Slab boundaries are indicated by dark lines. The snapshot is taken
at time stepn=400. (b) The electric field within the slab. Notice the region in the center of the slab, where the field amplitudes are very
small. The snapshot is taken at time step560. (c) It appears that the wave fronts inside the slab are hyperbolas, in agreement with the
theory. The snapshot is taken at time step1060.

For the interface problem, we will also need to know vectors. Waves that are propagating parallelytaxis are
conditions for the existence of surface waves. The input imsupposed to decay exponentially inside the slab. Indeed, for
pedance on the surface filled by a uniaxial material is, foru,=1,u,=—1,,=—1 dispersion equatior(5) takes the
TE-polarized fields, form

My —k)2(+k§=—k2, (14)

inpzﬂn )
] which represents, for a giveky, the two-sheeted hyperbo-
where the normal component of the propagation factor readgiq in k.k, plane with the axis parallel i, axis. It is easily

seen from Eq(14) that for waves withk,=0, k, becomes
Bre= 1 /%(wzez,uy—kf(), (10) complex and the fields inside the slab decay exponentially
y

z

with the distance from the interface.

, , . In the second casg,,>0, u,<0, €,>0. The wave vec-
with the square root branch defined by |3g) <0. kcisthe 4 qrface is a two-sheeted hyperboloid with the axis paral-

propagation factor along the surface. Thus, the €igensolig) 1 the surface normal. In our 2D case, real wave vectors
tions for an interface between this medium and free Spacgyist inside the region bounded by the asymptotes of the

satisfy the following equation: hyperbola associated to the wave vector surfaces. In this
case, dispersion equati¢h) for u,=1,u,=—1,6,=1 takes
Mx Mo
+-=0, (11  the form
Bte  Bo
where —KZ+ki=kj. (15)
Bo= /—wzéo,uo— K2 (12) As a third case, we consider the situation complementary
X to the second case in the sense that the signs of all the pa-
with Im(80) <0. rameters are changed. Notice that this does not affect the

Surface waves along the interface exist provided that botghape of the wave vector curves, so that the dispersion equa-

B's are imaginary, of course with negative imaginary parts:tion is of form (15). We haveu,<0, uy>0, ande,<0. In
Bre=—jae and By=—jay, where arg>0 and ap>0. fact, the Poynting vector is refracted positively in this case

The eigenvalue equation becomes [see Eq(8)], but this is an interesting case anyway because
of the afore-mentioned contrast with respect to the second

My Mo case.
a_TE+ a_ozo- (13 The fourth case consists of the usual isotropic BW slab

(ux=uy<0, ande,<0) where focusing and negative re-
Obviously, if all the material parameters are positive, thisfraction phenomena are present. The wave vector curves are
equation has no solutions, butf,<0, surface wave solu- ellipses (in our case of two equal parameters they are
tions are possible. This is well known for interfaces with circles, and real wave vectors exist everywhere inside the
free-electron plasma. slab.

Five different cases will be considered in the following. In  The fifth case is specially chosen to show the existence of
the first case, we choose,>0, uy<0, ande,<0. The surface waves in the case when<0, uy<0, ande,>0.
wave vector surface is a two-sheeted hyperboloid with axi$Ve can easily see from E@5) that there are neither real
parallel to thex axis. The asymptotes of the hyperbolaxi;p ~ wave vectors nor backward waves, sirigerki=—k3<0
plane divide the plane into regions of complex and real wavéor u,=u,= —1,,=1. However, it was found that surface
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FIG. 3. (Color onling (a) The electric fieldE, penetrating into the slab. The snapshot is taken at timerste0. (b) The electric field
within the slab. Some waves have already passed through the slab. It is seen that there are small fields in the region, where the wave vector
is complex, as predicted by the theory. The snapshot is taken at time=s#@0. (c) Dispersive effects are more clearly seen inside the slab.
The electric field is concentrated to the lower side of the slab. The wave fronts behind the slab outside the region of large amplitudes are
prolate ellipsesd,=5Ay,d=80Ay. The snapshot is taken at time steg 980.

waves on the interface are easily excited in this case. Let usropagate obliquely downwards inside the slab and the

now present the numerical results. power flow is refracted negatively. The distance of the source
from the first interface is discretized with five cells, and the
IV. NUMERICAL RESULTS AND COMPARISON thickness of the slab corresponds to 80 cells.

WITH THE THEORY

. o L. B. Case II: u,>0, pn,<0, €,>0
In the first four cases, we show the electric field distribu- Hx Hy €z

tion at three suitably chosen increasing time steps to illus- In Fig. 3@), a cylindrical wave is penetrating into a BW
trate the wave propagation and refraction phenomena. In thglab. In Fig. 3b), some numerical dispersion is visible. There
fifth case, we illuminate a rectangular cylinder to see surfacare significant fields inside the region where the theory yields
waves. Whenever a constitutive parameter is said to be posieal wave vectors, while the fields are rather small elsewhere.
tive, it is supposed to be a constant and equal to the freBespite some dispersive effects, the wave fronts of constant
space permittivity or permeability. Negative material param-field value are reminiscent of hyperbolas. The phase velocity
eters obey the Lorentzian dispersion rule and equat tg  is directed downwards. Some weak focusing of the power
or — ug at the center frequency. flow is seen in Fig. @). The phase velocity inside the slab is
directed downwards, as can be seen from the theory.
A. Case I: u,>0, ny<0, €,<0

In this case, the theory shows that the wave vectors are C. Case lll: 1,<<0, p,>0, €,<0

complex inside the slab within a region bounded by the as- To complete the analysis, we change the signs of the pa-
ymptotes of a hyperbola. Inspection of FigcPreveals that rameters of the second case. Clearly, the wave vector sur-
there is indeed a region in the slab, where the electric field ifiaces as defined by E@4) are not changed. The Poynting
negligible all the time. There are some fields within the slabvector is refracted positively in this case. However, the phase
just under the source. The hyperbola-shaped wave frontgelocity is directed upwardsee Eq(7) and(8)]. This phe-

MI(/@)\W ""’!I(Q\\”

(a) (b)

FIG. 4. (Color online (a) The electric fieldE, penetrating into the slab. Wave fronts are dramatically bent. The electric field distribution
is recorded at time step=220. (b) The electric field within the slab. Some waves have already passed through the slab. The wave fronts
are seen to be hyperbolas. The electric field distribution is recorded at time=s#@0. (c) Interestingly, the wave fronts behind the slab
appear to be ellipses with the center on the lower interface of thedilatbAy,d=80Ay. The electric field distribution is recorded at time
stepn=720.
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FIG. 5. (Color onling (a) The electric fieldE, penetrating into an isotropic BW slab. The electric fi@gis shown at time step
=400. (b) The electric field within the isotropic BW slab. Some waves have already passed through the slab. The first focus inside the slab
is seen in the figure. The electric fielt) is shown at time step=560. (c) The second focus behind the BW slab has become vigihle.
=20Ay,d=60Ay. The electric fieldg, is shown at time step=900.

nomenon is clearly seen during the simulation. From Fig. 4ectangular cylinder with a pulse having a slightly broader
we see that the electric field distributions inside the slab arspectrum. The electric field distribution induced on the sur-
quite similar to those of Fig. 3 except that the wave fronts ardace of the cylinder is shown in Fig. 6. Figuréab shows

less distorted in Fig. 4. In Fig.(d), the wave fronts behind how the surface waves begin to develop. The source has just
the slab are seen to be oblate ellipses with the center on th®en switched off in Fig. @). In Fig. 6b), surface waves

lower interface of the slab. have propagated to the opposite side of the cylinder as well.
In agreement with the theory, there are no fields inside the
D. Case IV: An isotropic slab with p1,<0, 1,<0, €,<0 cylinder except for the immediate vicinity of the surface of

. . . the cylinder.
Here we consider the usual isotropic B double nega- 4

tive) slab with all the relative material parameters close to
—1. This case has been studied, for example, by Ziolkowski
and Heyman in Refl5] in the case of the Drude slabs. We  \Wave propagation and refraction phenomena in uniaxially
obtained quite similar results with our alternative discretiza-anisotropic BW slabs have been studied with the FDTD
tion technique in the case of isotropic Lorentz medium. Themethod. Special attention was paid to the shape of the wave
electric field distributions are shown in Fig. 5. We can cal-fronts and to the regions inside the slabs, where the wave

culate the positions of the foci from the slab thickndssnd  vector becomes complex, thus resulting in exponentially de-
the distancelg of the source from the interface. Notice that caying waves. The numerical results for anisotropic BW
we must havel;<d to have a focus inside the slab. The foci

should appear ay=—d, inside the slab and at=—(2d r ,’-\\ ) |

—d,) behind the slab. The appropriate derivations can be ,,, \“

found in Ref.[5].

From Fig. 5a) we see that the electric field is concen-
trated in the expected position of the first focus. In Fi@)5
the second focus behind the slab is also visible. It takes some — —
time for the foci to develop, as is seen from Figh)s where
the second focus is not yet seen. The incident spectrum has
some small components for which the relative material pa- @)
rameters are not exactly 1. Hence, the wave fronts are not
perfect circles as predicted by the theory. Anyway, these re-
sults are in agreement with the theory concerning negative
refraction of the Poynting vector. However, no “perfect” fo- T * SO E0 -0 2080 “
cusing has been observed, meaning that the focus area is '
always not smaller than about half wavelength. Steady-state
solutions for the foci were not obtained. This same observa-
tion was also made by Ziolkowski and Heyman in Hé&fl.

V. CONCLUSIONS

E. Case V:j,<0, p,<0, €,>0 (b)

For this set of material parameters, the theory predicts that F|G. 6. (Color online (a) The surface waves begin to develop.
the waves decay exponentially everywhere inside the slalrhe source has just been switched off at time stef860. (b) At a
However, we have found that surface waves are easily elater moment of time rf=1020), surface waves exist around the
cited in this case, in accordance with the theoretical prediceylinder. As is known from the theory, there are negligible fields
tion, see Eq(13). To see this phenomenon, we illuminate ainside the cylinder.
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slabs were seen to qualitatively agree well with the theoret- ACKNOWLEDGMENTS
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